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The rotating m-waves of Kelvin form a class X,, m > 2, of m-fold symmetric regions D of 
constant vorticity os = 1 which are uniformly rotating with an angular velocity (bifurcation 
parameter) I;, in the range R,-, < B <a,, 0, s (m - 1)/2m. The class X, corresponds to 
the rotating ellipses of Kirchoff. We present a numerical method for the determination of the 
stability-characteristics .of the class X,,,. The method, based on Burbea’s theory of the 
stability of vortex-motions, uses conformal mappings to construct the spectrum of a certain 
crucial “stability-operator” B. Numerical results show the existence of a critical value 
Q,,(m) = (30, + Q,,- ,)/4 with the following property: Given any 0 E (f2,,_, , a,,,], there 
exists a steady state D E .Tm, unique up to a rotation, magnification and reflection, whose 
angular velocity is Q. Moreover, this state is (secularly) stable if and only if Q,,(m) < 
a < R,. Other stability-characteristics of the class X,,, are determined. The entire results of 
Love for the particular class .Xr are obtained here as special cases. 

1. INTRODUCTION 

Recent analytical and computational work in two-dimensional vortex-dynamics 
establishes the existence of certain periodical steady states of vortex motions (Burbea 
[ 1,3 1, Deem and Zabusky [S 1, Landau [ 111, Landau and Zabusky [ 121, 
Pierrehumbert [ 141 and Saffman and Szeto [ 151). A convenient way of expressing 
these states is via the conformal mapping 4 of the exterior of the circle onto the 
exterior of a region D (vortex) of vorticity cc) [ 11, in general assumed to be a constant 
w E q,. The boundary 80 of a steady vortex D is then a streamline for an incom- 
pressible flow with a stream function ly and such that 30 forms the boundary of 
discontinuity of the vorticity-function Aty. In that case Aty = CO,, - 2R in the interior 
of D while Aty = - 2Q in its exterior, where the constant Q serves as a (major) bifur- 
cation parameter, representing the angular velocity of the vortex D about its centroid i 
(assumed to be at the origin). 

*This research was completed while this author was visiting the Mittag-Leffler Institute, Sweden, 
during 1981-1982. 
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128 BURBEA AND LANDAU 

When the vortex D is a single simply connected region which is subject to only 
uniform rotation, the resulting steady states themselves tend to be rigidly rotating. In 
1880 Kelvin showed that small perturbation of the circle proportional to cos m0 
rotated uniformly with angular velocity n = (l/2) w,,(m - 1)/m, m > 2 (see Lamb 
[ 10, p. 2311). Another well-known (exact) steady state is the elliptical vortex of 
Kirchoff [lo, p. 2321 with the angular velocity S = w,,Q/(l + Q)*, where Q is the 
aspect-ratio of the ellipse (i.e., the ratio of the minor radius over the major radius), 
Q E (0, 11. This rotating ellipse is the finite amplitude form of the m = 2 wave of 
Kelvin. We shall refer to the finite amplitude form of the m-waves of Kelvin as the 
class AT,,,, m > 2, of the Kelvin waves. 

The problem of finding the shapes of the steady states D in the class .X,, m > 3, 
and their angular velocities was recently attacked numerically by Deem and Zabusky 
[5]. They showed two examples of steady states in the class X,,, for m = 3,4, all 
valid to three significant figures. The computations in [5] were done by employing a 
“contour-dynamics” algorithm. In Burbea [l 1, a proof for the existence of these 
Kelvin waves was given by bifurcating the trivial solution of the circle. Moreover, an 
analytical method, based on asymptotic expansion of conformal mappings, for the 
determination of the states D EXm and their angular velocities was presented 
(Burbea [3]). These steady states are m-fold symmetric regions of constant vorticity 
and are uniformly rotating. They constitute a generalization of the rotating ellipse of 
Kirchoff which corresponds to m = 2. 

Once a steady vortex is found, the question of its stability-characteristics presents 
itself naturally. In 1898, Love [ 131 gave a complete .account of the stability 
properties of the entire elliptic class X2. This was done by deforming the elliptic 
vortex D E X, with a perturbation field which is irrotational everywhere. The 
stability analysis in Love [ 13 ] was accomplished by appealing to classical methods 
of matching, on the boundary of the disturbed elliptical vortex, the exterior and 
interior stream functions, and, following the tradition established by Kirchoff, Love 
used Cartesian coordinates to describe the interior of the elliptic vortex while ellip- 
tical coordinates were used to describe its exterior. In this way a simple, but 
nevertheless ingenious, analysis was possible. However, in spite of the ingenuous 
ingredients of Love’s method, his analysis seems to be applicable only in the case 
where the vortex is elliptical. 

It is rather suprising that since Love’s work no explicit stability-characteristics of 
vortex motions which are not elliptic seems to have appeared in the literature. In this 
regard, no exception is made for the existing Kelvin’s variational principle on the 
excessenergy for the steady vortex motions (see, for example, 1151). Needed in a 
stability-characteristics are the following ingredients: (1) an explicit and precise 
perturbation field ST(D) for the steady state D, (2) an effective stability-criterion for 
the steady vortex in terms of the spectrum of a relevant operator B whose domain of 
definition is R(D), (3) an explicit rule which orders the eigenvalues and eigenvectors 
of B as natural modes and harmonics and, finally, (4) an explicit dispersion-relation 
for the perturbation of the steady vortex in terms of the natural modes of B. 

Such a stability-characteristics has recently been presented in Burbea [2,4] when 
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the steady vortex D is a single simply-connected region of constant vorticity cc0 and 
is subjected to rotation and strains of any order. It is an effective and coordinate-free 
stability condition, applicable to a more general family of steady states which 
contains the m-Kelvin waves 5Y,,, as a subfamily. In particular, with this stability- 
characteristics the results of Love [ 13 1, on the stability of class X2, are obtained as 
special cases. The stability-criterion that is provided in Burbea [2,4] is formulated in 
terms of the spectrum of a self-adjoint operator B in the space of complex sequences 
I,. This “stability-operator” is an elementary expression involving the so called 
“Grunsky, ” “Hankel” and “Toeplitz” operators, G, H and T, respectively, of the 
steady vortex D. These important operators introduced in Burbea [2,4], embody the 
relevant information concerning the boundary of the steady vortex D as the normal 
derivative of the stream function and the condition for non-singularity of the vortex. 
The actual expression for the stability-operator B is 

* [(I-T)*-((G-4)(%@,, 

where I is the identity operator on 1, and the bar denotes complex conjugation. 
In this paper we give a detailed stability analysis of the m-Kelvin waves X,,, for 

m > 3. In particular, we shall compute the critical values of the angular velocity 
Q,,(m) and of the aspect-ratio Q,,(m) for the stability of any steady vortex D EX,,,. 
Moreover, we give an exhaustive account of the stability properties of any class X, 
in such a way that the entire results of Love [ 131 for the elliptic case X2 will appear 
as special cases. To do so we must, of course, compute first the steady states of X,,, 
and their corresponding angular velocities. This may be accomplished by analytical 
methods described in Burbea [31. We, however, proceed in a different, but 
numerically more direct, manner described below. 

The steady vortex D E X,,, and its angular velocity J2 are determined by a first- 
order relaxation algorithm, developed first in Landau [ 111 (see also Landau and 
Zabusky [12]) and is similar to that of Pierrehumbert [ 141 in the two singly- 
connected case. Once D E z,,, is determined, we numerically compute the conformal 
mapping 4 of the exterior of the unit disk onto the exterior of D. This will be accom- 
plished via the Theodorsen method (Gaier 161) and thereby the Grunsky-operator G 
is determined. The Handel- and the Toeplitz-operators H and T, respectively, will be 
determined by computing the normal derivative of the stream function w along the 
boundary of D, parametrized by the conformal mapping /. We then form the crucial 
stability-operator B. The spectrum of the truncation of this operator will be deter- 
mined by a QR-algorithm [ 161 whence the natural modes and the dispersion-relation 
of the perturbation of D EX, are obtained. The stability analysis is concluded with 
the investigation of the positivity of the spectrum along with other stability- 
characteristics. 

In Section 2 we give a brief account of the theoretical ingredients, based on Burbea 
[2,4), and, we formulate the rules of the stability-characteristics for steady vortex 
motions. Section 3 is a preliminary discussion of the properties of the Kelvin waves 
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X,,, from the analytical standpoint. It serves as a guide and a motivation for our 
numerical findings as well as a test to the efficacy of the general theory of Section 2. 
In Section 4 we describe in detail the actual numerical algorithm and give flow-charts 
for the code itself. Section 5 is a report on our numerical findings. It constitutes a 
summary of the properties of Kelvin waves X, and their stability-characteristics. 

As an illustration of the scope of the new findings we wish to single out the 
following result, stated in terms of dimensionless quantities with wO = 1: 

Given any integer m > 2 and any number R in the range 

1 m-l 
+g<*s--, 

2 m 

there exists a steady (m-fold symmetric) vortex D E X,, unique up to rotation, 
magnification and reflection, whose angular velocity is Q. This steady vortex is 
(secularly) stable if and only if R > O&), where 

n,,w=~ 
( 

m-l m-2 
3n,$- . m-l 1 

2. GENERAL THEORY 

We give a brief account of the theoretical tools needed in this work and we refer 
the reader to the works of Burbea [l-41 for analytical details and extensions. 

Under consideration is a two-dimensional incompressible flow u = (-a, w, 8, w) 
with a stream function v. The vorticity of the flow Aty, in consistency with the Euler- 
equation, is chosen to be a piecewise constant. By a vortex we mean a compact 
subset D of the plane whose boundary C = 80 is a boundary of discontinuity of the 
vorticity Aty. For simplicity, we shall assume that the vortex D is a single Jordan 
region whose boundary C is sufficiently smooth. The vorticity is chosen to be 
w,, - 20 in D and :2Q in the exterior ED of D. Here, w,, is a given constant while 
the angular velocity R of D about its centroid serves as a (major) bifurcation 
parameter. 

As in [l-4], it is found very convenient to employ complex notation. Accordingly, 
for z = x + iy we use 

az = ;<a, - q,), a, = f(a, + ia,) 

and thus A = 48,8,, and, u = 2iQy. The area Lebesgue measure is denoted by 
da(z) = dxrfy. Under these circumstances the stream function v may be given by 

(2.1) 
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with 

R(z)=-fRlzJ*+ReL(z), (2.2) 

where L(z) is an entire-holomorphic function. In the case of the m-waves of Kelvin, 
L(z) is chosen to be identically zero. The boundary of the vortex is convected with 
the flow, and thus the flow is wholly tangential. Mathematically, this becomes 

2 Re[z’a,w] = Re[z’iii], z E c, (2.3) 

as a condition for the boundary C. Here, z = z(s, t) is the parametric representation 
of C with respect to the arc-length s and time t, and, a prime and a dot denote 
differentiation with respect to s and t, respectively. 

Equation (2.3), together with (2.1~(2.2), is the evolution equation for the 
boundary C of the vortex. A steady solution of this equation satisfies 8, v/ = 0 which 
is equivalent to 

22’8, w = ia, v; z = z(s) E c, (2.4) 

where a,,v is the normal derivative of the stream function. This means that C is a 
streamline for II/. 

Once a steady solution D is found, the conformal mapping z = g(w) which maps 
the exterior of the unit disk E, = (0: 1 w 1 > 1) onto the exterior of the vortex ED can 
be determined. The mapping g(u) is always of the form 

g(w) = 4(w), ~(w)=w+ f b,cx”, a#O; WEE,. (2.5 > 
n=O 

The Grunsky-coeficients b,, of 4 are defined by 

log I(w) - W) = _ 2 
W--t 

b,ko.Pr-k; W,TEEd. 
n.k=l 

P-6) 

These coefficients form a symmetric matrix with b,, = bl,, n > 1 and the recursion 
formula 

k-l n-l 

(n + 1) b,+I,k=bn+k + nb,,k+l + n C bk-jbnj- C jbn-jbjke 

j=l j=l 
(2.7) 

We consider the customary complex Hilbert space I, of sequences a = (a,, a2,...) 
with the inner product and norm 

(a,P)= 5 aniL llall=dGGJ 
n=l 
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Let A be a linear operator in I, with a matrix representation A = (AJ and whose 
domain of definition Qa is dense in I,. We define 2 = (x,J and A’ = (Akn) to be the 
matrix transpose of A (note that Dz= gA). The adjoint of A is given by A * = 2’. 
The operator A is self-adjoint if A* = A and is symmetric if A * = A. 

The Grunsky-operator G = (Gnk) is defined by G,, = @b-,,, where the b,, are 
the Grunsky-coefficients of the mapping $ of (2.6). This is a symmetric operator in I, 
which is also bounded with norm 11 Gil < 1. Moreover, (1 GII < K for some 0 < PC < 1 if 
and only if the boundary of the vortex D has no cusps. 

Referring now to (2.4) and (2.5) we define the vortex-function 

Since a,, w is a real-valued continuous function on C it follows that r(8) is real-valued 
and continuous in 19 E [0,2n]. The Fourier expansion of r(0) is, therefore, 

r(e)= 5 r,e’“e; r-n = Fn. (2.9) 

Associated with this vortex-function are the Hankel- and Toeplitz-operators 
H = (H,,J and T = (T,,,J, respectively. They are defined by Hnk = fi rntk and 
T,,, =flr,,-,, where it is stipulated that their common domain of definition g is 
dense in I,. Evidently, H is symmetric and T is self-adjoint in I,. 

With the aid of the operators G, H and T we introduce the crucial stability- 
operator 

* [(I-T)*-(G-H)(&@], (2.10) 

where I is the identity operator in 1,. This operator is self-adjoint in 1, with g as its 
domain of definition. We also introduce the companion-operator 

J= T 
( ) 

* [(G-H)%T(G-H)] (2.11) 

whose domain of definition is also Q and is skew-symmetric in I,, i.e., .I* = -1 
In order to investigate the stability of the steady vortex D, the evolution equation 

(2.3 j should be linearized about this steady state with a perturbation field which is 
anti-holomorphic in D. This leads to the following stability-characteristics enunciated 
and first proved in Burbea [2,4]: 

STABILITY-CHARACTERISTICS. Let z = g(eie) = a#(e”), as in (2.5), describe the 
boundary of the steady vortex D. Then, the following hold: 

(1) Stability-criterion. The vortex is stable (with respect to ?Z c 12) if and 
only if B is a positive operator, i.e., the quadratic form (Ba, a) is positive-definite for 
aE.@, a#O. 
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(2) Stability-Test. (AI, a) = 0 for every a E g and in order that the vortex be 
stable (with respect to c?S) it is necessary that .% = 0 for a E !S. 

(3) Natural-Modes. The eigenvalues (necessarily real) u2 and the 
corresponding eigenvectors a of B are ordered as natural-modes by the following 
rule: the n-mode a’“’ is the eigenvector a of B so that the eigenfunction 

Fc@) = , g’(;*e),2 Re [ g’(e”) P(e’“)] 

with 

p(e’e) = g akkl/2 ei(k- 1) 0, 

k=l 
a = (a,, a2 ,...), 

has 2(n - 1) zeros in [0,2n]. The natural n-eigenvalue uf, is the eigenvalue of B 
corresponding to the n-mode a (“) The natural n-harmonic is the (natural) n- . 
eigenfunction 

(4) Dispersion-Relation. The dispertion-relation of the perturbation of the 
vortex is determined by 

ui = (Ba(“), acn))/ll a’“’ II2 

or 

and, therefore, the vortex is n-mode stable if and only if ui > 0. 
When the steady vortex D is symmetric about the real axis, the above formulation 

may be simplified as follows: First, the coefftcients b, of the mapping in (2.5) are all 
real and, therefore, the Grunsky-coefftcients b,, in (2.6) are also all real. Moreover, 
the coefficients rn of (2.9) are real, that is, r-, = r,, and, therefore 

r(l9) = r-0 + 2 2 r, cos nf3. (2.12) 
II=1 

It therefore follows that the Grunsky-, Hankel- and Toeplitz-operators are all real 
symmetric matrix-operators. This shows that the stability-operator B in (2.10) is now 
the real symmetric operator 
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while the companion-operator J in (2.11) is now the real-skew symmetric operator 

’ [(G-H)T-T(G-H),. (2.14) 

Moreover, the eigenvectors a of B all have real entries. 
A further and significant simplification occurs when the steady vortex D is m-fold 

symmetric about the origin (m > 2). In this case the coefficients b, in (2.5) are all 
zero except those for which n + 1 is a multiple of m, and thus 

1 + g bnm~lw-“m . 
ll=l I 

Moreover, the Grunsky-coefficients b,, are all equal to zero if n + k is not a multiple 
of m while for the non-zero coefficients the recursion formula (2.7) becomes 

Iklml 
nbnk = bn+k-l + (n- l)bn-l,k-l + (n- 1) 1 bjm-lb,-l,k+l-jm 

j=l 

I(n- Q/ml 

- ,g, (n -jm> bjm- Ibn-jm,k* (2.15) 

Also, in (2.9) the coefficients r,, are zero if n is not a multiple of m and corresponding 
to (2.12) we now have 

r(0) = r. + 2 f mm cos nm8. 
Ii=1 

(2.16) 

These simplifications are inherited by the operators G, H and T and therefore by B 
and J. 

The uniformly rotating waves of Kelvin are obtained when the entire function L(z) 
in (2.2) is chosen to be identically zero. These waves are m-fold symmetric steady 
states (Burbea [ 1,3 I), belonging to the Kelvin class Zm, and, may always be 
normalized to be symmetric about’the real-axis. In that case, an effective expression 
for the vortex function r(e) in (2.8) may be obtained as follows: we let z =x + iy = 
g(ere) E C with x = x(O), y = y(B), and, denoting differentiation with respect to t9 by 
a dot, we have 

with 

(2.18) 
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evaluated at z = x + iy = g(eie). Furthermore, the coefftcients r,, in (2.16) are now 
given by 

1 

I 

2n 
r nm =- 2X0, 

o & (~23, ty - ia,, y) cos nm0d6; n = 0, 1,2 ,.... (2.20) 

3. PROPERTIES OF KELVIN WAVES-PRELIMINARY (ANALYTICAL)REPORT 

In this section we discuss the properties of the Kelvin waves Xm from the 
analytical standpoint. As such this report is preliminary in nature. A conclusive 
numerical report based on the present general theory is given in Section 5. 

It is convenient to deal with dimensionless quantities and this corresponds to 
taking o0 = 1. Besides the angular velocity a which serves as a (major) bifurcation 
parameter, it is also found convenient to introduce an auxiliary parameter ~1 by 

p=l-2J-2. (3.1) 

The aspect-ratio Q, Q E (0, l] of a Kelvin-vortex D EX, is directly related to its 
angular velocity R, and hence to ,u. In general, however, this relationship is very 
involved (cf. Burbea [3]). With the natural n-eigenvalue cri of the stability-operator B 
we consider the quantity 

l(n) - I(n: 0) = 05; n = 1, 2,..., (3.2) 

which is also a (real-valued) function of ,U or Q. Another quantity, playing a role in 
this work, is 

In order to ,motivate our numerical findings we discuss first the situations where 
closed-form solutions can be found. This will also serve as a test to the efficacy of the 
previously described general theory. The present analysis follows the lines of Burbea 
[2,4]. In (2.5), we take the mapping 

qj(e’“) = p + be - (0, 0 < Ibl < 1, (3.4) 

describing an ellipse with aspect-ratio 

(3.5) 

It forms a steady rotating vortex if and only if 

6[p - 22’(1 + lbl’)] = 0 (3.6) 
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and in that case the vortex-function r(0) is the constant r(d) = r0 satisfying 

r-0 =p - lb/*, br,=b(l -/L) (rn=0,n2 1). (3.7) 

The Grunsky-operator of (3.4) is the diagonal matrix G = (p ?I,,) and by (3.7) the 
Hankel-operator is H = 0 and the Toeplitz-operator is T = r,(n~,,). Consequently, 
the stability-operator is now the diagonal matrix 

B = $([(l - nr$ -]!?]‘“I S,,) 

while the companion-operator is now J = 0. Moreover, the nth diagonal element of B 
is precisely the natural n-eigenvalue 0: of B and the “Dispersion-Relation” (4) now 
reads 

(3.8) 

Equation (3.6) shows that the trivial circle-solution b = 0 is a steady vortex with P 
being arbitrary. In this case, by (3.7), r0 =P and, therefore by (3.8) 

n(n) = ~(n,u - 1)2, n > 1 (b = 0,~ arbitrary). 

This solution is, therefore, stable for all modes n > 1, provided p# m - ’ where m is 
some integer m > 1. In the case that indeed ,u = m -’ the solution whose angular 
velocity, in view of (3.1) and (3.3), is a,,, is (secularly) stable with a dispersion- 
relation 

2 

i,(n:n,)=~ ;n-1 ; 
( 1 

n>l,b=O. 

This forms the basis for the existence of the m-waves of Kelvin as solutions which 
bifurcate from the circle-solution b = 0 when the parameter ~1 of (3.1) takes on the 
value m- ’ (cf. Burbea [ 1,4]). The case of m = 1 is excluded for in that case, by 
(3. l), Q = 0. The corresponding auxilary parameter ~1 of these m-waves lies in 

m-l <p < (m - 1)-l, m > 2. (3.10) 

It therefore follows that for any number ,u satisfying (3.10) there exists a steady 
vortex D E X,,, , unique up to a rotation, magnification and reflection, such that its 
angular velocity is R = (1 -,u)/2. In terms of 0 the range of existence of X,, in 
view of (3:1), (3.3) and (3.10), is 

a m-1 ~Q<%l (3.11) 

and we note that the circle-solution is a member of every class X,,, with angular 
velocity D = a,. 

The class X2 is determined by (3.4)-(3.7) with 0 < lb] < 1, giving 

p = 2-71 + lbl’), r,, = 2-‘(1 - lb]‘); 0 < lb/ < 1 (3.12) 
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and, therefore, using (3.1) and (3.5), 

Ja=fu -IV)= (1 ,e,), . 

This shows that .Yz is identically the class of Kirchoff ellipses (Lamb [ 10, p. 2321 
and Love [ 131) and we note that (3.11) and (3.13) are consistent. Moreover, from 
(3.8) and (3.12) we have 

A,(n)d*(n:R)+ 
I[ 

1(1 -lbl’)- 1 1 I *-lb(‘” ) o< (bl < 1, (3.14) 

which is consistent with (3.9) when m = 2 and b = 0. This dispersion-relation agrees 
with that of Love, which he obtained by using classical methods. In terms of the 
aspect-ratio Q or the angular velocity J2, (3.14) reads 

Q (1 + Q)* 
ml]*- (+-$I, O<Q<l, (3.15) 

or 

n,(n)=a{(l -2nJ2)2-(1 -4qn}, 0 < a ( l/4. (3.16) 

The natural n-harmonic in the perturbation field of this elliptic-vortex (3.4) is 

F,(B) = I d,;eie)12 Re[#‘(eie) ePi(“-‘)‘] 

and we note that in consistency with the “Natural-Modes” (3) principle, F,(B) has 
2(n - 1) zeros in [0,27r]. 

As already been noticed by Love [13], (3.15) shows that 

A,( 1) = 02, L,(2) = 0 (0~ Q< 1) (3.17) 

and J,(3) > 0 if and only if Q > 3-i. This results in the existence of a critical aspect- 
ratio Q,,(2) s 3-l of the class X2 with the property that any (elliptic) vortex 
D E X2 with aspect ratio Q E (0, l] is (secularly) stable if and only if Q > Q,,(2). 
However, in spite of the physical significance of the aspect-ratio Q, the governing 
relationship between the members D E Z,,, , m > 3, and their aspect-ratios Q, is very 
involved and defies prediction of a closed form formula. The situation is changed 
drastically, as also evident by (3.11) and (3.16), when dealing with $2 instead of Q. In 
class X2 the relationship between Q and R is very simple and is determined by 
(3.13), and, thus, 

J-4,(2) = -g (Q,,(2) = 3 -I). (3.18) 



138 BURBEA AND LANDAU 

To extend the above analysis to more general classes Z,, m > 3, and, in 
particular, in order to obtain their corresponding stability-characteristics we resort to 
numerical means based on the general theory. This is conducted in Sections 4 and 5. 

4. NUMERICAL ALGORITHM 

The numerical algorithm consists of two major parts: (1) the “Stationary-State 
Solver” (SSS) and (2) the “Stability-Analyzer” (SA). The SSS is contained in SA as 
an integrated component. It is based on a first-order relaxion algorithm, similar to 
that employed by Pierrehumbert [ 141 in the two singly-connected regions of vorticity. 
The present SSS was first developed and carried out in Landau [ 111, where more 
details can be found. 

In view of (2.1)-(2.2), the stationary state can be determined by solving 

y(z) I ye(z) - $2 1 z 1’ = const., ZE c=m, (4.1) 

where 

wdz) = 2 j log I c - z I WC). 
D 

Equation (4.1) is rewritten in the following real form, where Fig. 1 may serve as a 
guide: 

p&)-fl2p*=C; c = const., 

‘c/o@, 0) = 2 r2 H@ 
rl =I (0 

cosO-&psinO-q) &, 
XI tl= - f(I) 

H(x,y)=y[2-‘log(x’ +y2)- l] +xtan-‘b/x), (4.2) 

c = p(0) cos 0, 0 < 0 Q 2n, 

f(t) = p(O) sin 0, o<o<n. 

As we are seeking m-fold symmetric states which are also symmetric about the x- 
axis, 

p(O) =p[(27r/mM) k + 01 =p[(2n/mM) k- 01, k = O,..., mM, 

and the first equation of (4.2) may be written as an integral-over a n/m-sector and a 
sum over 2m sectors. We introduce the dimensionless quantities 



KELVIN WAVES IN VORTEX DYNAMICS 139 

FIG. 1. Rotating singly-connected vortex. 

and for convenience we choose 

max p(O) = 1 =p(O). 
BElO, 2nl 

With these normalized quantities we observe that 

c’=~,(1,0)-~ti, 

Moreover, the aspect-ratio Q is now Q = p, . 
Suppressing the tilde on the normalized quantities, the algorithm aims at finding 

the zeros of the function 

E(O) E I//(O) - )12p2(0) -c (v(@) = wo@(@), 0)) (4.3) 

over a finite number of Oj in a sector. Since v, R and c are functionally dependent on 
p(O) by integral expressions, most of the change in E(O) is associated with the 
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change in p(0). To minimize the error, we determine the change in radius d(0) by 
the first-order expansion of w(O): 

and, thus to a first-order approximation 

d(@j) = - E(@j)/a, W&(@j), @j), j = o,..., M. 

The flow-chart for this SSS is described in Fig. 2. 

c 
FJ - $[P~,“~I j=O,...sM 

1 Numervn 1 
I 

I ap+J=ap$j(P,Oj)lp.p J-o,...,M 
J I 

I Numerical Integration 
I 

amj I=-*, , 
P 1 

j=l,...,M-1 

FIG. 2. Flow-chart for the Stationary-State Solver (SSS). 
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Once a steady state D E X,,, is computed, the SA is intiated. As a first step in the 
SA we apply the Theodorsen method (Gaier [6, pp. 61-811, Gutknecht [7,8] and 
Henrici [9]) for the determination of the conformal mapping z = g(w) which maps 
E,= {w:]w] > 1) onto the exterior E, of D. This mapping is normalized by 
g(co) = co and g’(co) = a > 0, its expansion, therefore, is of the form (2.5). The 
mapping z = g(w) is determined if we can find a continuous function S(0) such that 

Q(8) = arg{ de’“)), 0,<9<271. (4.4) 

Theodorsen’s method aims at determining @(13) and this is done by solving the 
equivalent equation 

@(&I-)=&$j~=logp(Q(~)]cot~& (4.5) 

where the integral is taken in the principal-value sense. The existence of g is 
guaranteed by the Riemann-mapping theorem, and, since (4.4) and (4.5) are 
equivalent, this implies that the nonlinear singular integral equation in (4.5) always 
has at least one strictly monotone continuous solution. Moreover, it can be shown 
[6, p. 66; 71 that if p(O) satisfies the so called “e-condition” with E < 1 (a condition 
which is always fulfilled for the class Z,,,), then (4.5) has exactly only one such a 
solution. After O(8) is determined, the coefftcients (which now are all real) in (2.5) 
will be given by 

b,,=+-jln p[O(e)] cos[Q(e) + (n - I) 01 dt9, (n + 1 E 0 (mod m)), (4.6) 
0 

where 

u = &j2*p[B(e)] COS[@(e) - e] de. 
0 

(4.7) 

We also note that in (4.6), b, = 0 if n + 1 is not a multiple of m. 
For numerical computations equation (4.5) has to be discretized. This leads to the 

discrete Theodorsen equation [6, p. 85; 7; 8; 91: 

e=e-mop. (4.8) 

Here 8, 0, log p(O) are 2N-dimensional vectors with components Bk = kn/N, O,, and 
logp(O,), k= l,..., 2N, respectively, and K = (Kkj) is Wittich’s matrix: 

K,=O, ifj - k even 

1 =-cot$-$n, ifj-kodd (k,j= 1,...,2N), 
(4.9) 

N 

where, of course, 0, is supposed to approximate O(&). One shows (cf. Gaier [6, p. 
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861) that, again, Eq. (4.8) has exactly one solution and, moreover, the solution can be 
computed by direct iteration or by variants of Newton’s method [9]. These numerical 
methods are very efficient even for large N (i.e., fine discretization) because the fast 
Fourier transform can be applied [8]. To implement the Theodorsen method we use 
the stationary solutions (0,~) found by the SSS as the initial states 

0; = Ok, PI:=Pk (k = l,..., 2N) 

for the iteration of (4.8). Next, using 

Of+’ = I9 -K log p(0’) 

with K as in (4.9), we calculate @p’ on the (1/2m)th part of contour C. The rest of 
the OF’ can be found by symmetry. Further, we use a piecewise-linear interpolation 
of the contour C to find p; ‘, and, finally the values of the radii corresponding to the 
polar angles @I+’ are corrected by reapplying the SSS. 

The coefficients a and b, of the conformal mapping are computed by a discretized 
version of Eqs. (4.6)-(4.7), using fast Fourier transform techniques [9]. In this way 

1 a=-& f pkcos[Ok-t$] 
k-l 

and 

p,cos[@,+(n- l)e,] (n + 1 z 0 (mod m)). 

The fact that 6, = 0 if n + 1 is not a multiple of m simplifies the calculations of the 
Grunsky-coefficients b,, . These coefficients are computed via the s,,, the recursive 
relation (2.15) and the fact that b,, = 0 if n + k is not a multiple of m. With these, 
the real-symmetric Grunsky-matrix G = (@b,,) is found at once. However, 
because the sequence 6= {6,} is periodic with period 2N, it makes no sense to use 
more than 2N terms in the series of (2.5). Consequently, the maximum size of the 
approximate Grunsky-matrix G will be (N t 1) X (N t 1). 

It would seem that two errors are committed in the above approximation, namely, 
(1) the error committed in replacing the exact Fourier-coefficients a and b, by the 
approximate Fourier-coefficients a^ and 6,, and (2) the error committed in truncating 
the Fourier series itself. However, as emphasized also in Henrici [9], the present 
method has the fortunate feature that at least at the sampling points t7,, these two 
errors just cancel each other. That is, for 8 = Bk the function g(e’“) not only approx- 
imates, but actually interpolates the conformal mapping g(efe) (cf. Henrici [9] for 
further details). 

We are now in a position to compute the vortex-function r(0) as in (2.8) or (2.17). 
We shall use (2.16)-(2.20). To compute an approximate vortex-function ?(f3) at the 
sampling points 0, we evaluate the partial derivatives 8, w and aY ly in (2.18~(2.19) 
using a trapezoidal rule along the indicated contour C. The values of 3 = &/de and 
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p= dy/de at e= e, are determined by taking the real and imaginary part, respec- 
tively, of the truncated series 

&efe) = f g(efe) = i(ieie 
( 
1 - gI (n - 1) heTine), at e=e,. 

Finally, we obtain f(S,) by applying (2.17). As an estimate for the error in 
calculating 40,) we may use the equation 

iaa,w+JjayV/=O, at e=e,, (4.10) 

reflecting the fact that the boundary C is indeed a streamline for w. In our case r(0) is 
m-fold symmetric and, hence, we only have to compute F(e,) on the (1/2m)th part of 
the contour. From (2.16) follows that I, = 0 if n is not a multiple of m and, 

Intltlal 
Approximation 

Theodorsen’s 
Iterative step 

CII 

Stationary State 
Solver 

PJ = P (@j) 

I I 
Failed 

Passed 

Grunsky 
Toeplltz --n Hankel 
operators 

QR-algorithm ‘i 

FIG. 3. Flow-chart of the Stability-Analyzer (SA). 

581/45/l-10 
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moreover, from (2.20) follows that we can again apply the fast Fourier transform to 
evaluate the non-zero coefficients rn. With these coefftcients we construct the ap- 
proximate real-symmetric Hankel-matrix H = (fl I, + ,J and Toeplitz-matrix 
T = (fir.-J. Again, the size of these matrices is (ZV + 1) x (N + 1) and it makes 
no sense to compute more then N + 1 coefficients rn, II = 0, l,..., N. 

Once the approximate matrices G, H and T are found the approximate stability- 
matrix B and the companion-matrix J are at once determined via (2.13)-(2.14). We 
compute the real eigenvalues u2 and the corresponding eigenvectors a of the real- 
symmetric matrix B by employing a QR-algorithm [ 161 for symmetric matrices, and, 
we also check, in view of the “Stability-Test” (2), how close the equation Ja = 0 is 
satisfied in the range of stability. This procedure gives (N+ 1) eigenvalues cz and 
(N+ 1) corresponding eigenvectors a. However, the output order of a2 and a is, in 
general, not the natural-modes order. We reorder them in accordance to the “Natural- 
Modes” (3) rule. 

A flow-chart for the SA algorithm is given in Fig. 3. With the above described 
constructions the entire numerical algorithm for this work is essentially concluded. 

5. PROPERTIES OF KELVIN WAVES-NUMERICAL RESULTS 

In this section we discuss the properties of the Kelvin class .X,,, which are 
discovered numerically by using the present algorithm. This report complements the 

TABLE I. 

m-Fold Symmetric Kelvin Waves X,,, 

Nm Q n Area Perimeter 
Maximum Minimum 
curvature curvature 

1 3 0.90 0.33209 2.8192 5.9854 1.5929 
2 3 0.80 0.32724 2.4799 5.7230 2.6815 
3 3 0.70 0.31787 2.1171 5.4967 5.2127 
4 3 0.60 0.30326 1.6989 5.2884 22.2603 
5 3 0.52 0.28221 1.4225 5.2080 236.2933 

6 4 0.90 0.37300 
7 4 0.80 0.36583 
8 4 0.70 0.35398 
9 4 0.67 0.35122 

10 5 0.90 
11 5 0.80 
12 5 0.75 

13 6 0.90 
14 6 0.87 
15 6 0.80 

0.39729 
0.38793 
0.38293 

2.8112 
2.4428 
1.9876 
1.9005 

2.8028 
2.3971 
2.1578 

0.41326 2.7940 
0.41068 2.6740 
0.40419 2.3282 

6.0060 
5.8058 
5.8228 
5.6693 

6.0345 
5.9199 
5.9195 

6.0713 
6.0496 
6.1128 

2.1956 
5.3962 

91.7892 
95.7830 

3.1495 
14.4136 

115.4890 

4.6308 
7.507 1 

17.8749 

0.6925 
0.4300 
0.2378 
0.1707 

-19.2714 

0.4303 
0.0528 

-0.0612 
-0.7994 

0.1357 
-0.2798 
-0.6259 

-0.1723 
-0.3685 
-0.5069 

Error 

0.33775 x 1o-6 
0.25087 x lo+ 
0.11437 x 1o-6 
0.10966 x lo-* 
0.97648 x 1O-3 

0.17131 x 1o-6 
0.83094 x lo-’ 
0.34692 x 10 -6 
0.88179 x 1O-3 

0.11401 x 10-6 
0.88289 x 1O-6 
0.25398 x lo-’ 

0.66011 x lo-’ 
0.84005 x 1O-6 
0.13039 x 10-6 
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preliminary report in Section 3. The latter, however, may serve as a guide and a 
motivation for the numerical findings that we discuss here. 

The stationary states of the class A?,,,, 2 < m < 6, are computed via the SSS. The 
numerical results are presented in Tables I-II and Figs. 4,5. The classical elliptic 
case of m = 2, however, is not reported explicitly as it has already been described in 
(3.4~(3.18). Table I, for 3 < m < 6, gives .R, Q and the characteristics of the contour 
of DEX”,. This includes area, perimeter, maximum-curvature and minimum- 
curvature. It also provides the maximum of the error E(O) of (4.3). Table II contains 
the first ten modes of the Fourier-cosine representation that allows one to reconstruct 
the contour to four significant figures. The present steady states are also in agreement 
with the computations of Burbea [3] which are based on asymptotic expansions of 
conformal mappings. The theoretical range of existence a,,-, ( LJ < a,,, in (3.11) is 
recovered to four signilicant figures. Table I indicates that the area and the perimeter 
of the vortex are directly related to its aspect-ratio Q, a fact which may also be 

FIG. 4. m-fold symmetric Kelvin waves Z,,, (sequential numbers N = l,..., 15, correspond to those 
of Table I). 
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0.25 

0 1/6 l/5 1/4 
l/m 

l/3 l/2 

FIG. 5. Existence and stability diagram for the class Zm. (1) Upper bound for existence and 
stability of solutions (0, = (l/2)@ - 1)/m). (2) Lower bound for stability of solutions (&(m) = 
(l/g)[3(m - 1)/m + (m-2)/@ - 111). (3) L ower bound for existence of solutions (LJ,,_, = 
W)(~ - 74m - 1)). 

predicted via analytical means. On the other hand, the maximum-curvature of the 
contour is oppositely related to the aspect-ratio, indicating the formation of cusps 
when Q = 20,-r = (m - 2)/(m - 1). This suggests the number 2J?,,-, as the 
supremum for the allowable aspect-ratio of the class X,,,. Indeed, on also using 
(3.1 l), the ranges of Q and LJ in the class 3, are 

24 ,,,-,<Q<l, a,,,-,<a<&,,. (5.1) 

Moreover, Q and 0 are functionally related by B =f,(Q) with the f,,, being a positive 
smooth function which is monotonically increasing on the interval [24,-r, 11. Also, 
f, maps [251,-r, l] onto [a,,-,,a,] with 

fmW*-1)=~m-l9 fm(l)=%l~ (5.2) 

This relationship between the endpoints corresponds to the bifurcation of the circle- 
solutions as in (3.9) (cf. Burbea [ 11). A closed-form formula forf,(Q), m > 3, is not 
available. 

We also note that by (5.1) the supremum of R for all the classes X,,, is l/2 (see 
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Fig. 5) which corresponds to X, . However, the class Xm = lim,, X,,, would have 
an indeterminate meaning. 

As for the application of Theodorsen’s method of the found states of Xm, we first 
tested it to the ellipses of X2. Computations with different ellipses have shown the 
quick convergence of the iterative-procedure (20-60 iterations) for solving the 
discrete Theodorsen equation. Using 100 nodal points on one quarter of the ellipses 
we were able to recover the correspondance function O(0) up to six significant 
figures. Also we computed the eigenvalues of the stability-operator B with an 
accuracy of up to three significant figures. 

Similar results are obtained for the class X,, 3 < m < 6. Again, to achieve the 
three significant figures accuracy, 100 nodal points per (1/2m)th part of the contour 
are needed. We compute the coefficients for the conformal mapping of a D E X,,, by 
using Theodorsen’s method, and, compare them with the results of Burbea 131. In 
Burbea [3], few of these coefficients were computed analytically by using methods of 
asymptotic expansions. The comparison shows the agreement in six significant 
figures. In all computed states, the test in (4.10) has been satisfied up to five 
significant figures while the test Ja = 0 of the “Stability-Test” (2), within the range of 
stability, is satisfied up to three-four significant figures. 

Figure 6 shows the examples of the first six natural harmonics F,Jt9), 1 Q n < 6, of 

I 

: 

n-o.31787 

n-1 

n-2 

v 

/ 

I 

n-O.30326 

n-1 

n-2 

4 
FIG. 6. Natural harmonics F,(B) of class X, (based on “Natural-Modes” (3) rule). 



c 

I 

J 

n-o. 33209 

n-3 

n=4 

w 
n=o. 33209 

n=5 

R-O.31787 

n=3 

P 
n=4 

w 

n-O.31787 

n=5 

1 

n-3 

e 
n-4 

i 

i 

n-o. 35326 

n-5 

n-6 

n-O.30326 



150 BURBEA AND LANDAU 

TABLE III 

Natural n-Eigenvalues of the Stability-Operator B for Classes Zm (m = 3,4) 

??I=3 m=4 
- 

n/Q 0.33209 0.032724 0.31787 0.30326 0.37300 0.36583 0.35398 

0.11029 0.10713 0.10112 0.09218 0.13913 0.13384 0.12532 
0.02706 0.02528 0.02145 0.01493 0.06145 0.05393 0.04348 

-o.ooooO -O.OOOOO -o.oooo 1 0.00002 0.01483 0.01025 0.00378 
0.02642 0.02032 0.00888 -0.00509 - -O.OOOOO -0.0000 1 -0.OoOO2 
0.10771 0.09216 0.06134 -0.00214 0.01247 0.00217 -0.00368 
0.24386 0.21559 0.13314 0.02447 0.05491 0.01758 -0.00747 
0.43490 0.39068 0.29955 0.14720 0.12684 0.06753 -0.00725 
0.68080 0.61740 0.48573 0.30630 0.23573 0.15824 0.04355 

the “Natural-Modes” (3) rule for 3-fold symmetric states D EX, with the different 
angular velocities 0 = 0.33209, 0.32724, 0.30326. The eigenvalues of the stability- 
operator B are given in Table III. The dispersion-diagram ui = ai@) as determined 
by the “Dispersion-Relation” (4) rule for 2 <m < 4 is shown in Fig. 7, where the 
solid lines represent computed eigenvalues of the operator B while the dashed lines 
illustrate our prediction of the behaviour of these eigenvalues in the range of non- 
stability. The predicition is based on the computed results for the elliptic state and on 
the fact that higher harmonics cannot pass the point of infinite curvature. Conse- 
quently, using the notation of (3.2) 

we have 

lim [a,n,(n: Q)] = 0, 12 = m - 1, m, m + l,.... 
R-4,-, 

A further analysis of the dispersion-digram (Fig. 7 and Table III) leads to the 
following stability-characteristics of the class X,,, : 

(1) For any m > 2, the natural m-eigenvalue IZ,(m: J2) = a;(a) is always zero on 
the range of existence R,-, < 0 < a,,-, , within four significant figures accuracy. 
This means that the states of X,,, are never stable with respect to the m-mode. The 
special case with m = 2 is exhibited in (3.17). 

(2) The critical value of stability of the class X,,, in terms of the angular velocity 
is 

Q,,(m)=+- 
( 

m-l m-2 
37+= , 

1 
m> 2, 

a formula coinciding with (3.18) when m = 2 (see also Love [ 131). This formula is 
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FIG. 7. Dispersion diagram for classes X,,, (m = 2,3,4) 
(the curve number n, n = l,..., 8, corresponds to the n-natural eigenvalue R,(n: 0) = CT:@?)). 

validated up to three significant figures. With the notation of (5.1~(5.2) we have 
0 =f,(Q) and, therefore, 

d(349 + &n-I) = %(m> =.fmlQc,Wl~ 
The uniquely determined critical values Q,,(m) and L?,,(m) are computed numerically 
and are given in Table IV. We were not able to suggest a closed-form expression for 
the value of &(m), m > 3. 

(3) For any number 0 (or Q) satisfying (5.1) there exists a state D E .Xm which 
is unique up to rotation, magnification and reflection, such that 52 is its angular 
velocity (or Q is its aspect-ratio). Moreover, the state D is (secularly) stable if and 
only if ~2 > L!,,(m) or Q > Q,,(m) (see Fig. 5). 
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TABLE IV 

Critical Values of Aspect Ratios and 
Angular Velocities for Class X,,, 

m Q&l Q,,(m) 

2 0.3333 0.1875 
3 0.6654 0.3122 
4 0.7845 0.364 1 
5 0.8532 0.3933 
6 0.8911 0.4120 

(4) According to (1) and (3) the states of X, are (secularly) stable for 
a > n,,(m) and they are never stable with respect to the m-mode. This phenomenon 
is well understood even in the classical literature (see, for example, Love [ 131 for the 
case of m = 2). Indeed, the perturbation of a stationary state D E .Xm by the natural 
m-harmonic corresponds to a generation of another stationary state D, E X,,, with an 
angular velocity 0, slightly different from the older angular velocity 0 of D, and the 
disturbed state D, tends in a very long, but finite, time to become finitely different 
from the undisturbed state D. This kind of perturbation is labeled as “secular”. 
However, any other perturbation orthogonal to the secular m-harmonic in L,(D) is 
oscillatory in character, provided Q,,(m) < 0 < Q,. When R,- I < R < Q,,(m) the 
state D becomes unstable and even a very small disturbance causes the development 
of “tentacles” (see also Landau [ 111). 

(5) The motion of any D E Z,,, is stable for any disturbance whose natural 
harmonics are of order lower than m. The (m + 1)-natural harmonic is always the 
first one that causes the motion to become unstable. 

(6) In the limiting case of R = a,, i.e., when D E jZr,,, becomes the circle 
solution, the natural (m + n)-eigenvalue is equal to the natural (m - n)-eigenvalue for 
every n = 1,2 ,..., m - 1. Indeed, by virtue of (3.9) 

2 

&(m+n:l2,)=A,(m-n:O,)= & ; 
c i 

l<n<m-1. 

(7) As a function on the interval (0, l/2), a:(Q) for n > 2 has exactly (n - 2) 
jumps at the points Q = ~2~ with 

nk = (k - 1)/2k, k = 2,..., n - 1. 

It can be negative on parts: of the intervals 

Q/(-1 < n < a,, k = 2,..., n - 1. 

On the (n - 1)-interval 
R n-2 < f2 < a,-,, 
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o:(Q) crosses the D-axis at three quarters of this interval. On the next interval 
of(f2) = 0 and becomes positive and continuous for 

B, < R < l/2. 

(8) For disturbances associated with the n = 1 mode, all states D E X,,, , for 
any m > 2, are stable. This perturbation corresponds to a slight displacement of the 
steady vortex D without change of form and the perturbed vortex tends to oscillate 
about its original position as a mean. The angular velocity of these oscillations is the 
same as the angular velocity of the vortex, that is 

Ok = *a (u;(L!) = A,( 1: 0)). 

Again, the special case of m = 2 is exhibited in (3.17). 
Finally, we discuss the behaviour of the natural n-eigenvalue IZ,(n: 0) = a~@) of 

the stability-operator B of the state D E ;-“, as a function of n > 1. In order to 

FIG. 8. Natural eigenvalue diagram (circle-solution). &,,(x: fJ,,,) = 4(x/m - l)*, x ) 1. 
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I16000 

FIG. 9. Natural eigenvalue diagram for class X2 (elliptic-solution). 
n,(x:n)=~((l-2Rx)‘-(1-4Q[))X),x)1. 
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FIG. 10. Natural eigenvalue diagram for class .R’, . 1, = 1,(x: Q), x > 1. 
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emphasize this behaviour we replace the discrete variable n by a continuous variable 
x E [ 1, co) and consider the function 

l,(x) - 1,(x: a), XE [L a) 

where the bifurcation parameter Q is restricted to the interval of (5.1) 

n m-l <nga,. 

This function possesses the following properties (see Fig. B-10): 

(1) J,(x) is concave-up with a single minimum at m < x,,,~" < 00; 
(2) n,(x) > 0 for 1 <x < m, A,(m) = 0 and X,in = m if and only if R = 0, ; 

(3) A,(x), for a,-, < fl < LI,, vanishes at x = m and at x=x,,, where 
m <X,in <X0. Moreover, x,<m+l, x,=m+l or x,>m+l if and only if 
R > &(m), R = O,,(m) or 0 < Qcr(m), respectively. 

Again, the above listed properties of n,(x) determine L!,,(m) and all the other 
stability characteristics of the class X,,,. The present numerical results are in a full 
agreement with the analytical results concerning the circle solutions and the class XZ 
exhibited in Section 3. 

The above dispersion-diagrams and in particular those of Fig. 7 contain further 
additional information than the one we have described here. However, because of the 
clarity of the diagrams and the scope of the present paper we regard the description 
of the stability-characteristics of the class X, as essentially concluded. 
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